skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campbell, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guanine-rich nucleic acid sequences can adopt G-quadruplex (G4) structures, which pose barriers to DNA replication and repair. The FANCJ helicase contributes to genome stability by resolving these structures, a function linked to its G4-binding site that features an AKKQ amino acid motif. This site is thought to recognize oxidatively damaged G4, specifically those containing 8-oxoguanine (8oxoG) modifications. We hypothesize that FANCJ AKKQ recognition of 8oxoG-modified G4s (8oxoG4s) depends on the sequence context, the position of the lesion within the G4, and overall structural stability. Using fluorescence spectroscopy, we measured the binding affinities of a FANCJ AKKQ peptide for G4s formed by (GGGT)4, (GGGTT)4, and (TTAGGG)4 sequences. G4 conformation and thermal stability were assessed by circular dichroism spectroscopy. Each sequence was modified to include a single 8oxoG at the first (8oxo1), third (8oxo3), or fifth (8oxo5) guanine position. In potassium chloride (KCl), the most destabilized structures were (GGGT)4 8oxo1, (GGGTT)4 8oxo1, and (TTAGGG)4 8oxo5. In sodium chloride (NaCl), the most destabilized were (GGGT)4 8oxo1, (GGGTT)4 8oxo5, and (TTAGGG)4 8oxo5. FANCJ AKKQ binding affinities varied according to damage position and sequence context, with notable differences for (GGGT)4 in KCl and (TTAGGG)4 in NaCl. These findings support a model in which FANCJ binding to G4 and 8oxoG4 structures is modulated by both the oxidative damage position and the G4 local sequence environment. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract The Kellogg Biological Station Long‐term Agroecosystem Research site (KBS LTAR) joined the national LTAR network in 2015 to represent a northeast portion of the North Central Region, extending across 76,000 km2of southern Michigan and northern Indiana. Regional cropping systems are dominated by corn (Zea mays)–soybean (Glycine max) rotations managed with conventional tillage, industry‐average rates of fertilizer and pesticide inputs uniformly applied, few cover crops, and little animal integration. In 2020, KBS LTAR initiated the Aspirational Cropping System Experiment as part of the LTAR Common Experiment, a co‐production model wherein stakeholders and researchers collaborate to advance transformative change in agriculture. The Aspirational (ASP) cropping system treatment, designed by a team of agronomists, farmers, scientists, and other stakeholders, is a five‐crop rotation of corn, soybean, winter wheat (Triticum aestivum), winter canola (Brassicus napus), and a diverse forage mix. All phases are managed with continuous no‐till, variable rate fertilizer inputs, and integrated pest management to provide benefits related to economic returns, water quality, greenhouse gas mitigation, soil health, biodiversity, and social well‐being. Cover crops follow corn and winter wheat, with fall‐planted crops in the rotation providing winter cover in other years. The experiment is replicated with all rotation phases at both the plot and field scales and with perennial prairie strips in consistently low‐producing areas of ASP fields. The prevailing practice (or Business as usual [BAU]) treatment mirrors regional prevailing practices as revealed by farmer surveys. Stakeholders and researchers evaluate the success of the ASP and BAU systems annually and implement management changes on a 5‐year cycle. 
    more » « less